5 M ay 2 00 8 Square - Difference - Free Sets of Size Ω ( n 0 . 7334 ) Richard Beigel

نویسندگان

  • Richard Beigel
  • William Gasarch
چکیده

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x − y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. It is known that n 0.733077... ≤ sdf(n) ≤ O (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

8 M ay 2 00 8 Square - Difference - Free Sets of Size Ω ( n 0 . 7334

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x − y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. Ruzsa has shown that sdf(n) = Ω(n65 ) = Ω(n0.733077···) We improve on the lower bound by showing sdf(n) = Ω(n205 ) = Ω(n0.7334···) As a corollary we obtain a new lower bound on the quadratic van der Waer...

متن کامل

A pr 2 00 8 Square - Difference - Free Sets of Size Ω ( n 0 . 7167 − ǫ )

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x − y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. It is known that n ≤ sdf(n) ≤ O ( n(log log n)2/3 (log n)1/3 )

متن کامل

Square-Difference-Free Sets of Size Ω(n0.7334···)

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x− y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. Ruzsa [10] has shown that proved sdf(n) ≥ Ω(nlog65 7) ≥ Ω(n0.733077···). sdf(n) = Ω(n65 ) = Ω(n0.733077···) We improve on the lower bound by showing sdf(n) = Ω(n205 ) = Ω(n0.7334···) As a corollary we obt...

متن کامل

1 2 M ay 2 00 5 A cooperative system which does not satisfy the limit set dichotomy Eduardo

The fundamental property of strongly monotone systems, and strongly cooperative systems in particular, is the limit set dichotomy due to Hirsch: if x(0) < y(0), then either ω(x) < ω(y), or ω(x) = ω(y) and both sets consist of equilibria. We provide here a counterexample showing that this property need not hold for (non-strongly) cooperative systems.

متن کامل

ar X iv : 0 90 5 . 02 98 v 1 [ m at h . C O ] 4 M ay 2 00 9 Point - sets in general position with many similar copies of a pattern Bernardo

For every pattern P , consisting of a finite set of points in the plane, SP (n,m) is defined as the largest number of similar copies of P among sets of n points in the plane without m points on a line. A general construction, based on iterated Minkovski sums, is used to obtain new lower bounds for SP (n,m) when P is an arbitrary pattern. Improved bounds are obtained when P is a triangle or a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008